Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 13(1): 329, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600472

RESUMO

BACKGROUND: Indonesia has high mosquito diversity, with circulating malaria and arboviruses. Human landing catches (HLC) are ethically questionable where arboviral transmission occurs. The host decoy trap (HDT) is an exposure-free alternative outdoor sampling device. To determine HDT efficacy for local culicids, and to characterize local mosquito fauna, the trapping efficacy of the HDT was compared to that of HLCs in one peri-urban (Lakkang) and one rural (Pucak) village in Sulawesi, Indonesia. RESULTS: In Lakkang the outdoor HLCs collected significantly more Anopheles per night (n = 22 ± 9) than the HDT (n = 3 ± 1), while the HDT collected a significantly greater nightly average of Culex mosquitoes (n = 110 ± 42), than the outdoor HLC (n = 15.1 ± 6.0). In Pucak, there was no significant difference in Anopheles collected between trap types; however, the HDT collected significantly more Culex mosquitoes than the outdoor HLC nightly average (n = 53 ± 11 vs 14 ± 3). Significantly higher proportions of blood-fed mosquitoes were found in outdoor HLC (n = 15 ± 2%) compared to HDT (n = 2 ± 0%). More blood-fed culicines were collected with outdoor HLC compared to the HDT, while Anopheles blood-fed proportions did not differ. For the HDT, 52.6%, 36.8% and 10.5% of identified blood meals were on cow, human, and dog, respectively. Identified blood meals for outdoor HLCs were 91.9% human, 6.3% cow, and 0.9% each dog and cat. Mosquitoes from Pucak were tested for arboviruses, with one Culex pool and one Armigeres pool positive for flavivirus, and one Anopheles pool positive for alphavirus. CONCLUSIONS: The HDT collected the highest abundance of culicine specimens. Outdoor HLCs collected the highest abundance of Anopheles specimens. Although the HDT can attract a range of different Asian mosquito genera and species, it remains to be optimized for Anopheles in Asia. The high proportion of human blood meals in mosquitoes collected by outdoor HLCs raises concerns on the potential exposure risk to collectors using this methodology and highlights the importance of continuing to optimize a host-mimic trap such as the HDT.


Assuntos
Comportamento Alimentar , Controle de Mosquitos/métodos , Mosquitos Vetores , Alphavirus/isolamento & purificação , Animais , Anopheles , Infecções por Arbovirus/transmissão , Culex , Coleta de Dados/métodos , Vetores de Doenças , Entomologia/métodos , Flavivirus/isolamento & purificação , Humanos , Indonésia , Malária/transmissão , Patologia Molecular/métodos , População Rural , Doenças Transmitidas por Vetores/transmissão
2.
Parasit Vectors ; 13(1): 379, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727610

RESUMO

BACKGROUND: Understanding local Anopheles species compositions and bionomic traits are vital for an effective malaria vector intervention strategy. Though eight malaria vectors, including species complexes, have been documented across the island of Sulawesi, Indonesia, a comprehensive survey linking morphological and molecular species identification has not been conducted in this global hotspot of biodiversity. RESULTS: Eighteen distinct species of Anopheles were molecularly identified in a 1 km2 area in Karama village, West Mamuju Province, Sulawesi. Known species included An. aconitus, An. karwari, An. peditaeniatus, An. vagus, An. barbirostris, An. tessellatus, An. nigerrimus, An. crawfordi, An. maculatus, An. flavirostris and An. kochi. Of the 18 distinct sequence groups identified through both ribosomal DNA internal transcribed spacer region 2, and mitochondrial DNA cytochrome c oxidase subunit 1 loci, 8 could not be identified to species through comparison to published sequences. The comparison of morphological and molecular identities determined that interpretations of local species compositions for primary and expected species in Karama (An. barbirostris and An. vagus) had the highest rate of accuracy (92.1% and 87.6%, respectively) when compared to molecular analysis. However, the remaining distinct sequences molecularly identified to species were identified correctly by morphological methods less frequently, from 0 to 83%. CONCLUSIONS: Karama, Indonesia has a high diversity of Anopheles spp. The unexpected high number of Anopheles species in a small area points to possible complex transmission dynamics and limitations with vector control based on possible varying behaviors and interactions with both humans and interventions. Morphological identification of Anopheles spp. in this study was more accurate for primary and expected species than secondary or unexpected species. Finally, the inability to identify seven sequence groups to species with consensus sequences implies that future studies employing sequencing are required to clarify species compositions in the Nigerrimus Subgroup, among others, as well as their distribution and vector status. Use of molecular methods in conjunction with morphological investigations for analysis of species composition, population dynamics and bionomic characteristics is directly implicated in understanding drivers of malaria transmission, intervention effectiveness, and the pursuit of malaria elimination.


Assuntos
Anopheles , Biodiversidade , Animais , Anopheles/anatomia & histologia , Anopheles/classificação , Anopheles/genética , Classificação , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Humanos , Indonésia , Malária/transmissão , Mosquitos Vetores/anatomia & histologia , Mosquitos Vetores/classificação , Mosquitos Vetores/genética
3.
Parasit Vectors ; 12(1): 399, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409374

RESUMO

BACKGROUND: Sampling methodologies for mosquitoes that are capable of transmitting vector-borne infectious diseases provide critical information on entomological endpoints. Reliable and meaningful field data is vital to the understanding of basic vector biology as well as disease transmission. Various traps take advantage of different vector behaviors and are inevitably subject to sampling biases. This study represents the first comparison of kelambu traps (KT) to barrier screens (BS), barrier screens with eaves (BSE) and indoor and outdoor human landing catches (HLCs). METHODS: Two trap comparison studies were undertaken. In the first study, mosquitoes were collected in Karama over 26 trapping nights to evaluate the kelambu trap relative to indoor and outdoor HLCs. In the second study, mosquitoes were collected in Karama over 12 trapping nights to compare the kelambu trap, barrier screen, barrier screen with eaves and outdoor HLCs. The kelambu trap, barrier screen and barrier screen with eaves obstruct the flight of mosquitos. HLCs target host-seeking behaviors. RESULTS: There was no significant difference between indoor and outdoor HLCs for overall Anopheles mosquito abundance. All five of the molecularly identified Anopheles species collected by HLCs, An. aconitus, An. barbirostris, An. peditaeniatus, An. vagus and An. tessellatus, are reported as vectors of malaria in Indonesia. The kelambu trap (n = 2736) collected significantly more Anopheles mosquitoes than indoor HLCs (n = 1286; Z = 3.193, P = 0.004), but not the outdoor HLCs (n = 1580; Z = 2.325, P = 0.053). All traps collected statistically similar abundances for the primary species, An. barbirostris. However, both comparison studies found significantly higher abundances for the kelambu trap for several secondary species compared to all other traps: An. nigerriumus, An. parangensis, An. tessellatus and An. vagus. The kelambu trap retained the highest species richness and Gini-Simpson's diversity index for both comparison studies. CONCLUSIONS: This study demonstrates that the kelambu trap collects overall Anopheles abundance and species-specific abundances at statistically similar or higher rates than HLCs in Sulawesi, Indonesia. Therefore, the kelambu trap should be considered as an exposure-free alternative to HLCs for research questions regarding Anopheles species in this malaria endemic region.


Assuntos
Anopheles , Comportamento Alimentar , Controle de Mosquitos/métodos , Mosquitos Vetores , Animais , Entomologia/instrumentação , Entomologia/métodos , Indonésia , Especificidade da Espécie
4.
Parasit Vectors ; 12(1): 385, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370906

RESUMO

BACKGROUND: Population density, dispersion patterns, flight distances, and survival rate of vector mosquitoes are all contributors to vectorial capacity that may be estimated in a single experimental method: mark-release-recapture (MRR). In this study, these key parameters were measured for mosquito populations in Karama, West Sulawesi, Indonesia. METHODS: Two mark-release-recapture (MRR) experiments were carried out in Karama village to characterize seasonality differences, if any: wet season (December 2013, MRR1) and dry season (May 2014, MRR2). For both experiments, mosquitoes were marked according to release site/date and were released on four consecutive nights. Four sampling methodologies were utilized to enable recapture: human landing catches (HLCs), kelambu traps and barrier screens. RESULTS: 98.7% of all catches were molecularly confirmed as Anopheles barbirostris. During the wet season, An. barbirostris demonstrated no preference toward endophagy. In the dry season, An. barbirostris demonstrated an endophagic preference. The duration of the feeding cycle for An. barbirostris was determined to be 5 days during the wet season and 3.7 days during the dry season, though an anomaly likely caused the wet season feeding cycle to be overestimated. The largest percentages of recaptured mosquitoes were collected in a single site during both seasons. The only significant relationship with mosquito dispersal was site of release and recapture. Finally, dispersal rates of An. barbirostris frequently ranged up to 800 m (the maximum measurable distance in this study) within a single day of release. CONCLUSIONS: This study estimated key vector parameters for An. barbirostris an understudied species complex, in Karama, West Sulawesi, Indonesia. Despite the length of the feeding cycle, the high indoor biting rates demonstrated by An. barbirostris in Karama suggest that the use of IRSs and LLINs, especially during the dry season, would have a substantial impact on the panmictic An. barbirostris population.


Assuntos
Anopheles/fisiologia , Comportamento Alimentar , Mosquitos Vetores/fisiologia , Análise Espaço-Temporal , Animais , Anopheles/parasitologia , Feminino , Indonésia , Malária/transmissão , Mosquitos Vetores/parasitologia , Densidade Demográfica , Estações do Ano
5.
PLoS Negl Trop Dis ; 13(8): e0007606, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381570

RESUMO

Dengue virus transmission is endemic in Makassar, Indonesia, with the majority of cases reported soon after the start of the annual rainy season. Before 2006, larval source reduction, larvaciding, and reactive routine, outdoor, insecticide fogging campaigns did not result in a reduction in seasonal dengue incidence. Beginning in 2006, village volunteers conducted comprehensive surveys for immature Aedes during the dry season, when vector populations were at their lowest. Based on this pre-season vector data, a single additional pre-emptive outdoor fogging with Malathion was conducted once annually before the rains began in villages with a pre-defined proportion of sampled houses positive for Aedes immatures. This additional procedure was associated with reduced temporal larval indices as well as an 83% reduction in reported cases during the transmission season over the 8-year period of implementation. Two cities adjacent to Makassar experienced substantial but smaller reductions in dengue incidence; while other cities further from the intervention area did not. This represents the first time an integrated intervention strategy has been coupled with substantially reduced dengue transmission in Indonesia.


Assuntos
Dengue/transmissão , Vetores de Doenças , Estações do Ano , Tempo (Meteorologia) , Aedes/virologia , Animais , Cidades , Dengue/epidemiologia , Vírus da Dengue , Incidência , Indonésia/epidemiologia , Inseticidas , Larva , Mosquitos Vetores/virologia , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...